论文标题

带有变压器的狩猎小组线索识别社会团体活动识别

Hunting Group Clues with Transformers for Social Group Activity Recognition

论文作者

Tamura, Masato, Vishwakarma, Rahul, Vennelakanti, Ravigopal

论文摘要

本文介绍了社会群体活动识别的新框架。作为集团活动识别的一项扩展任务,社会群体活动识别需要识别多个子组活动并识别小组成员。大多数现有方法通过完善区域功能来解决这两个任务,然后将它们汇总到活动特征中。这样的启发式功能设计使容易受到不完整的人本地化的特征的有效性并无视场景上下文的重要性。此外,区域特征是识别组成员的最佳选择,因为这些特征可能由该地区的人群主导并具有不同的语义。为了克服这些缺点,我们建议利用变形金刚中的注意力模块来产生有效的社会群体特征。我们的方法的设计方式使注意力模块识别,然后汇总与社会群体活动相关的特征,从而为每个社会群体产生有效的功能。小组成员信息嵌入到功能中,从而通过前馈网络访问。馈送网络的输出代表组,因此可以通过组和个人之间的简单匹配来识别小组成员。实验结果表明,我们的方法优于排球和集体活动数据集的最先进方法。

This paper presents a novel framework for social group activity recognition. As an expanded task of group activity recognition, social group activity recognition requires recognizing multiple sub-group activities and identifying group members. Most existing methods tackle both tasks by refining region features and then summarizing them into activity features. Such heuristic feature design renders the effectiveness of features susceptible to incomplete person localization and disregards the importance of scene contexts. Furthermore, region features are sub-optimal to identify group members because the features may be dominated by those of people in the regions and have different semantics. To overcome these drawbacks, we propose to leverage attention modules in transformers to generate effective social group features. Our method is designed in such a way that the attention modules identify and then aggregate features relevant to social group activities, generating an effective feature for each social group. Group member information is embedded into the features and thus accessed by feed-forward networks. The outputs of feed-forward networks represent groups so concisely that group members can be identified with simple Hungarian matching between groups and individuals. Experimental results show that our method outperforms state-of-the-art methods on the Volleyball and Collective Activity datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源