论文标题
部分可观测时空混沌系统的无模型预测
Hebbian Continual Representation Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Continual Learning aims to bring machine learning into a more realistic scenario, where tasks are learned sequentially and the i.i.d. assumption is not preserved. Although this setting is natural for biological systems, it proves very difficult for machine learning models such as artificial neural networks. To reduce this performance gap, we investigate the question whether biologically inspired Hebbian learning is useful for tackling continual challenges. In particular, we highlight a realistic and often overlooked unsupervised setting, where the learner has to build representations without any supervision. By combining sparse neural networks with Hebbian learning principle, we build a simple yet effective alternative (HebbCL) to typical neural network models trained via the gradient descent. Due to Hebbian learning, the network have easily interpretable weights, which might be essential in critical application such as security or healthcare. We demonstrate the efficacy of HebbCL in an unsupervised learning setting applied to MNIST and Omniglot datasets. We also adapt the algorithm to the supervised scenario and obtain promising results in the class-incremental learning.