论文标题

部分可观测时空混沌系统的无模型预测

Monitoring pollution pathways in river water by predictive path modelling using untargeted GC-MS measurements

论文作者

Cairoli, Maria, Doel, André van den, Postma, Berber, Offermans, Tim, Zemmelink, Henk, Stroomberg, Gerard, Buydens, Lutgarde, van Kollenburg, Geert, Jansen, Jeroen

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A comprehensive approach to protect river water quality is needed within the European Water Framework Directive. Non-target screening of a complete chemical fingerprint of the aquatic ecosystem is essential, to identify chemicals of emerging concern and to reveal their suspicious dynamic patterns in river water. This requires a new combination of two measurement paradigms: the path of potential pollution should be traced through the river network, while there may be many compounds that make up this chemical composition - both known and unknown. Dedicated data processing of ongoing GC-MS measurements at 9 sites along the Rhine using PARAFAC2 for non-target screening, combined with spatiotemporal modelling of these sites within the river network using path modelling (Process PLS), provided a new integrated approach to track chemicals through the Rhine catchment, and tentatively identify known and as-yet unknown potential pollutants based on non-target screening and spatiotemporal behaviour.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源