论文标题
部分可观测时空混沌系统的无模型预测
Leader-Follower Dynamics in Complex Obstacle Avoidance Task
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A question that many researchers in social robotics are addressing is how to create more human-like behaviour in robots to make the collaboration between a human and a robot more intuitive to the human partner. In order to develop a human-like collaborative robotic system, however, human collaboration must first be better understood. Human collaboration is something we are all familiar with, however not that much is known about it from a kinematic standpoint. One dynamic that hasn't been researched thoroughly, yet naturally occurs in human collaboration, is for instance leader-follower dynamics. In our previous study, we tackled the question of leader-follower role allocation in human dyads during a collaborative reaching task, where the results implied that the subjects who performed higher in the individual experiment would naturally assume the role of a leader when in physical collaboration. In this study, we build upon the leader-follower role allocation study in human dyads by observing how the leader-follower dynamics change when the collaborative task becomes more complex. Here, the study was performed on a reaching task, where one subject in a dyad was faced with an additional task of obstacle avoidance when performing a 2D reaching task, while their partner was not aware of the obstacle. We have found that subjects change their roles throughout the task in order to complete it successfully, however looking at the overall task leader the higher-performing individual will always dominate over the lower-performing one, regardless of whether they are aware of the additional task of obstacle avoidance or not.