论文标题

部分可观测时空混沌系统的无模型预测

Finite Element Method for a Nonlinear PML Helmholtz Equation with High Wave Number

论文作者

Jiang, Run, Li, Yonglin, Wu, Haijun, Zou, Jun

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A nonlinear Helmholtz equation (NLH) with high wave number and Sommerfeld radiation condition is approximated by the perfectly matched layer (PML) technique and then discretized by the linear finite element method (FEM). Wave-number-explicit stability and regularity estimates and the exponential convergence are proved for the nonlinear truncated PML problem. Preasymptotic error estimates are obtained for the FEM, where the logarithmic factors in h required by the previous results for the NLH with impedance boundary condition are removed in the case of two dimensions. Moreover, local quadratic convergences of the Newton's methods are derived for both the NLH with PML and its FEM. Numerical examples are presented to verify the accuracy of the FEM, which demonstrate that the pollution errors may be greatly reduced by applying the interior penalty technique with proper penalty parameters to the FEM. The nonlinear phenomenon of optical bistability can be successfully simulated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源