论文标题

$ s $ - arithmetic(CO)同源性和$ P $ - adic自动形态表格

$S$-arithmetic (co)homology and $p$-adic automorphic forms

论文作者

Tarrach, Guillem

论文摘要

我们研究了还原组的$ s $ - ARITHMETIC(CO)同源性,这些字段具有(双重)的某些本地代数和本地分析表示,用于有限的Primes $ s $。我们使用结果来构建与$ s $的抛物线亚组相关的特征,以及其LEVI因素的某些类别的超舒张和代数表示。我们表明,这些与使用过度融合同源性构建的特征值一致,对于确定的统一群体,它们与Breuil-ding构建的伯恩斯坦特征植物密切相关。

We study the $S$-arithmetic (co)homology of reductive groups over number fields with coefficients in (duals of) certain locally algebraic and locally analytic representations for finite sets of primes $S$. We use our results to construct eigenvarieties associated to parabolic subgroups at places in $S$ and certain classes of supercuspidal and algebraic representations of their Levi factors. We show that these agree with eigenvarieties constructed using overconvergent homology and that for definite unitary groups they are closely related to the Bernstein eigenvarieties constructed by Breuil-Ding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源