论文标题
用于流体处理网络的强大服务器及
A Robust Server-Effort Policy for Fluid Processing Networks
论文作者
论文摘要
多级处理网络描述了一组服务器,这些服务器在不同项目上执行多个作业。找到对这种网络的最佳控制的有用且可牵引的方法是通过流体模型近似它,从而导致连续的线性编程(SCLP)问题。显然,此类系统中的到达和服务率遭受了固有的不确定性。最近的一项研究通过为具有预算不确定性的SCLP模型制定了强大的SCLP模型来解决此问题,该模型提供了解决率方面的解决方案。该解决方案转化为测序策略。但是,如果服务器可以同时处理多个作业,则无法实施测序策略。在本文中,我们建议在这些情况下使用资源分配策略,即每班服务器工作的比例。我们为四种不确定性集的处理速率和服务器效果模型制定了强大的对应物:盒子,预算,单方面预算和多面体。我们证明,与处理速率模型的强大解决方案的任何代数转换相比,服务器富度模型提供了更好的强大解决方案。最后,为了掌握我们的新模型在鲁棒模型上的改进,我们提供了一些数值实验的结果。
Multi-Class Processing Networks describe a set of servers that perform multiple classes of jobs on different items. A useful and tractable way to find an optimal control for such a network is to approximate it by a fluid model, resulting in a Separated Continuous Linear Programming (SCLP) problem. Clearly, arrival and service rates in such systems suffer from inherent uncertainty. A recent study addressed this issue by formulating a Robust Counterpart for SCLP models with budgeted uncertainty which provides a solution in terms of processing rates. This solution is transformed into a sequencing policy. However, in cases where servers can process several jobs simultaneously, a sequencing policy cannot be implemented. In this paper, we propose to use in these cases a a resource allocation policy, namely, the proportion of server effort per class. We formulate Robust Counterparts of both processing rates and server-effort uncertain models for four types of uncertainty sets: box, budgeted, one-sided budgeted, and polyhedral. We prove that server-effort model provides a better robust solution than any algebraic transformation of the robust solution of the processing rates model. Finally, to get a grasp of how much our new model improves over the processing rates robust model, we provide results of some numerical experiments.