论文标题

大型科恩·麦克劳(Cohen-Macaulay

Big Cohen-Macaulay test ideals in equal characteristic zero via ultraproducts

论文作者

Yamaguchi, Tatsuki

论文摘要

利用超级副本,Schoutens在本地域$ r $上构建了一个大的Cohen-Macaulay代数$ \ Mathcal {B}(R)$,本质上是$ \ Mathbb {C} $的有限类型的基本上。我们表明,如果$ r $是正常的,并且$δ$是有效的$ \ mathbb {q} $ - $ \ perperatorname {spec} r $ weil divisor,以至于$ k_r+δ$ as $ \ m m mathbb {q} $τ_ {\ hat {\ hat {\ mathcal {b}(r)}}(\ hat {r},\hatδ)$ of $(\ hat {r},\hatδ)$相对于$ \ hat {\ hat {\ nathcal {\ nathcal {b}(b}(r)) $(\ hat {r},\hatδ)$(\ hat {r},\hatδ)$,其中$ \ hat {r} $和$ \ hat {\ hat {\ mathcal {b}(r)} $ $ \ Mathcal {b}(r)$,$ \hatδ$是规范形态的$δ$的平坦回调,$ \ permatatorm $ \ operatotorname {spec} \ hat {r} \ to \ operatateOrnAme {specorname {spec} r $。作为应用程序,我们获得了纯环扩展下乘数理想的行为的结果。

Utilizing ultraproducts, Schoutens constructed a big Cohen-Macaulay algebra $\mathcal{B}(R)$ over a local domain $R$ essentially of finite type over $\mathbb{C}$. We show that if $R$ is normal and $Δ$ is an effective $\mathbb{Q}$-Weil divisor on $\operatorname{Spec} R$ such that $K_R+Δ$ is $\mathbb{Q}$-Cartier, then the BCM test ideal $τ_{\hat{\mathcal{B}(R)}}(\hat{R},\hatΔ)$ of $(\hat{R},\hatΔ)$ with respect to $\hat{\mathcal{B}(R)}$ coincides with the multiplier ideal $\mathcal{J}(\hat{R},\hatΔ)$ of $(\hat{R},\hatΔ)$, where $\hat{R}$ and $\hat{\mathcal{B}(R)}$ are the $\mathfrak{m}$-adic completions of $R$ and $\mathcal{B}(R)$, respectively, and $\hatΔ$ is the flat pullback of $Δ$ by the canonical morphism $\operatorname{Spec} \hat{R}\to \operatorname{Spec} R$. As an application, we obtain a result on the behavior of multiplier ideals under pure ring extensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源