论文标题

根据视觉范围的空气战斗模拟,监督机器学习有效发射有效导弹发射

Supervised Machine Learning for Effective Missile Launch Based on Beyond Visual Range Air Combat Simulations

论文作者

Dantas, Joao P. A., Costa, Andre N., Medeiros, Felipe L. L., Geraldo, Diego, Maximo, Marcos R. O. A., Yoneyama, Takashi

论文摘要

这项工作使用来自建设性模拟的可靠数据比较了监督的机器学习方法,以估算在空中战斗期间发射导弹的最有效时刻。我们采用了重采样技术来改善预测模型,分析准确性,精度,召回和F1得分。的确,我们可以根据决策树以及其他算法对重新采样技术的显着敏感性来确定模型的显着性能。最佳F1分数的模型的值分别为0.379和0.465,分别没有重新采样技术,这增加了22.69%。因此,如果理想,重新采样技术可以改善模型的召回和F1得分,而准确性和精确度略有下降。因此,通过通过建设性模拟获得的数据,可以根据机器学习模型开发决策支持工具,从而可以提高BVR空中战斗的飞行质量,从而提高进攻任务以达到特定目标的有效性。

This work compares supervised machine learning methods using reliable data from constructive simulations to estimate the most effective moment for launching missiles during air combat. We employed resampling techniques to improve the predictive model, analyzing accuracy, precision, recall, and f1-score. Indeed, we could identify the remarkable performance of the models based on decision trees and the significant sensitivity of other algorithms to resampling techniques. The models with the best f1-score brought values of 0.379 and 0.465 without and with the resampling technique, respectively, which is an increase of 22.69%. Thus, if desirable, resampling techniques can improve the model's recall and f1-score with a slight decline in accuracy and precision. Therefore, through data obtained through constructive simulations, it is possible to develop decision support tools based on machine learning models, which may improve the flight quality in BVR air combat, increasing the effectiveness of offensive missions to hit a particular target.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源