论文标题

QED真空响应对应用的准稳定电磁场的奇异特性

Singular properties of QED vacuum response to applied quasi-constant electromagnetic fields

论文作者

Evans, Stefan, Rafelski, Johann

论文摘要

采用Bogoliubov系数求和方法并引入陀螺仪比$ g \ neq 2 $我们得出了$ \ Mathfrak {im} v^\ mathrm {ehs} _g $的明确功能形式,euler-heisenberg-schwinginger(e heisenberg-schwinger(e heisenberg-schwinger)的想象。我们表明,对于任何(任何(quasi-)常量的电磁场配置,$ \ mathfrak {im} v^\ mathrm {ehs} _g $在$ g $中是周期性的,等于使用$ g $ ramanujan in $ g $ ramanujan在$ v^^\ mathsrms in of $ g $ ramanujan中获得的假想部分。这验证了$ v^\ mathrm {ehs} _g $的ramanujan表示形式,用于真实和虚构零件,并允许以适当修改的schwinger适当的时间格式编写有效的动作。作为比率$ b/a $之间的函数,$ {\ Mathcal {b}} \ to b $和$ {\ Mathcal {e}} \ to $ covariant to em fields的概括,我们探索$ \ \ \ m mathfrak {im} v^v^\ mathrm pm = $ 4 k = 0,\ pm1,\ pm2 \ ldots $涉及伪cal $ ab \ equiv \ equiv \ equec {\ mathcal {e}} \ cdot \ cdot \ vec {\ vec {\ mathcal {b}} $在扰动和非驾驶性行为中。我们研究了$ e^-e^+$ - 衰减真空不稳定性,在求和无限不可循环时包含$ g-2 $顶点图的物理价值。我们获得了有效的扩展参数$χ_b=αB/2a $($α= E^2/4π$),以$ G-2 $抑制真空不稳定性中的非驱动性发作。我们证明了$χ_b$域的$α$中的扰动扩展:在磁性为主导的\ lq Magnetar \ rq \环境中,受关键电场强度的EM真空稳定。单独考虑$ {\ Mathcal {e}} $和$ {\ Mathcal {b}} $ fields的情况,我们将$ v^\ mathrm {ehs} _g $ yg $有效操作的所有$ g $ concretize概括为所有$ g $。

Employing the Bogoliubov coefficient summation method and introducing the gyromagnetic ratio $g\neq 2$ we derive an explicit functional form of $\mathfrak{Im}V^\mathrm{EHS}_g$, the imaginary part of Euler-Heisenberg-Schwinger (EHS) type effective action. We show that $\mathfrak{Im}V^\mathrm{EHS}_g$ is periodic in $g$ for any (quasi-)constant electromagnetic field configuration, and equal to the imaginary part obtained using a periodic in $g$ Ramanujan integrand in the proper time representation of $V^\mathrm{EHS}_g$. This validates the Ramanujan representation of $V^\mathrm{EHS}_g$ for both real and imaginary parts and allows writing the effective action in a suitably modified Schwinger proper time format. As a function of the ratio $b/a$ between ${\mathcal{B}} \to b$ and ${\mathcal{E}}\to a$ covariant generalizations of EM fields, we explore the singular properties of $\mathfrak{Im}V^\mathrm{EHS}_g$ at $g=2\pm 4k, k=0,\pm1,\pm2\ldots$ involving the pseudoscalar $ab\equiv \vec{\mathcal{E}}\cdot\vec{\mathcal{B}}$ in perturbative and nonperturbative behavior. We study the $e^-e^+$-decay vacuum instability, incorporating the physical value of $g-2$ vertex diagrams when summing infinite irreducible loops. We obtain an effective expansion parameter $χ_b=αb/2a$ ($α=e^2/4π$), characterizing the onset of nonperturbative in $g-2$ suppression of vacuum instability. We demonstrate the $χ_b$ domains for which perturbative expansion in $α$ breaks down: The EM vacuum subject to critical electric field strength is stabilized in magnetic-dominated \lq magnetar\rq\ environments. Considering separately the case of ${\mathcal{E}}$ and ${\mathcal{B}}$ fields, we generalize to all $g$ the temperature representation of the $V^\mathrm{EHS}_g$ effective action.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源