论文标题
深度学习的教训应用于学术信息提取:什么无效,什么无效,未来的方向
Lessons from Deep Learning applied to Scholarly Information Extraction: What Works, What Doesn't, and Future Directions
论文作者
论文摘要
了解全文学术文章的关键见解至关重要,因为它使我们能够确定有趣的趋势,洞悉研究和发展,并构建知识图。但是,只有在考虑全文时才可用一些有趣的关键见解。尽管研究人员在简短文档中的信息提取方面取得了重大进展,但是从全文学术文献中提取科学实体仍然是一个挑战性的问题。这项工作提出了一个称为ENEREX的自动化端到端研究实体提取器,用于提取技术集使用,客观任务,全文学术研究文章的方法。此外,我们提取了三个新颖的方面,例如源代码,计算资源,编程语言/库中的链接。我们演示了Enerex如何从计算机科学领域的大规模数据集中提取关键见解和趋势。我们进一步测试了多个数据集上的管道,发现ENEREX在最先进的模型下改进。我们强调了现有数据集的能力如何受到限制,以及Enerex如何适应现有知识图。我们还向未来研究的指针进行了详细的讨论。我们的代码和数据可在https://github.com/discoveryanalyticscenter/enerex上公开获取。
Understanding key insights from full-text scholarly articles is essential as it enables us to determine interesting trends, give insight into the research and development, and build knowledge graphs. However, some of the interesting key insights are only available when considering full-text. Although researchers have made significant progress in information extraction from short documents, extraction of scientific entities from full-text scholarly literature remains a challenging problem. This work presents an automated End-to-end Research Entity Extractor called EneRex to extract technical facets such as dataset usage, objective task, method from full-text scholarly research articles. Additionally, we extracted three novel facets, e.g., links to source code, computing resources, programming language/libraries from full-text articles. We demonstrate how EneRex is able to extract key insights and trends from a large-scale dataset in the domain of computer science. We further test our pipeline on multiple datasets and found that the EneRex improves upon a state of the art model. We highlight how the existing datasets are limited in their capacity and how EneRex may fit into an existing knowledge graph. We also present a detailed discussion with pointers for future research. Our code and data are publicly available at https://github.com/DiscoveryAnalyticsCenter/EneRex.