论文标题
通过擦除编码服务器在多访问系统中处理异质流量
Tackling Heterogeneous Traffic in Multi-access Systems via Erasure Coded Servers
论文作者
论文摘要
现代应用程序生成的大多数数据都存储在云中,并且在访问这些数据并使用它们执行计算的作业量呈指数增长。数据访问或计算作业的数量可能在不同的作业类型中是异质的,并且随着时间的推移可能会发生不可预测的变化。云服务提供商通过过度提供托管每种作业类型的服务器数量来应对这种需求异质性和不可预测性。在本文中,我们建议添加擦除编码的服务器,这些服务器可以灵活地提供多种工作类型,而无需额外的存储成本。我们分析了此类擦除编码系统的服务能力区域和响应时间,并将它们与当前在云中使用的标准未基于复制的系统进行了比较。我们表明,编码扩大了服务能力区域,从而使系统能够处理对不同数据类型的需求的可变性。此外,我们在各种到达率制度中表征了编码系统的响应时间。该分析表明,即使添加少数编码的服务器也可以显着减少平均响应时间,并且在不同工作类型中偏向需求的制度大大降低。
Most data generated by modern applications is stored in the cloud, and there is an exponential growth in the volume of jobs to access these data and perform computations using them. The volume of data access or computing jobs can be heterogeneous across different job types and can unpredictably change over time. Cloud service providers cope with this demand heterogeneity and unpredictability by over-provisioning the number of servers hosting each job type. In this paper, we propose the addition of erasure-coded servers that can flexibly serve multiple job types without additional storage cost. We analyze the service capacity region and the response time of such erasure-coded systems and compare them with standard uncoded replication-based systems currently used in the cloud. We show that coding expands the service capacity region, thus enabling the system to handle variability in demand for different data types. Moreover, we characterize the response time of the coded system in various arrival rate regimes. This analysis reveals that adding even a small number of coded servers can significantly reduce the mean response time, with a drastic reduction in regimes where the demand is skewed across different job types.