论文标题
2N-流的保守散射
2n-Stream Conservative Scattering
论文作者
论文摘要
我们展示了如何使用量子力学的基质方法进行有效,准确地计算云中轴向对称的辐射转移,并保守地散射任意各向异性。对保守散射的分析,其中单个散射反照率为$ \tildeΩ= 1 $,并且在辐射和散射器之间没有能量交换,始于Schwarzschild,Milne,Eddington,Eddington和其他人在恒星中辐射转移的工作。那里的散射是各向同性的。很难将传统方法扩展到高度各向异性的散射,例如地球云中的阳光。此处描述的$ 2N $ - 流方法是处理高度各向异性,保守的散射的实用方法。 $ 2N $ - 流的方法的基本思想是Wick通过各向同性散射到任意各向异性散射的热中子运输的开创性工作。在我们以前的论文(Arxiv:2205.09713v2)中描述了如何进行有限吸收和$ \tildeΩ<1 $的方法。但是,当$ \tildeΩ= 1 $时,这些方法对于保守散射失败。在这里,我们表明,针对$ \tildeΩ<1 $的基本$ 2N $散布理论的微小修改使其适合$ \tildeΩ= 1 $。
We show how to use matrix methods of quantum mechanics to efficiently and accurately calculate axially symmetric radiation transfer in clouds, with conservative scattering of arbitrary anisotropy. Analyses of conservative scattering, where the single scattering albedo is $\tildeω=1$ and no energy is exchanged between the radiation and scatterers, began with work by Schwarzschild, Milne, Eddington and others on radiative transfer in stars. There the scattering is isotropic or nearly so. It has been difficult to extend traditional methods to highly anisotropic scattering, like that of sunlight in Earth's clouds. The $2n$-stream method described here is a practical way to handle highly anisotropic, conservative scattering. The basic ideas of the $2n$-stream method are an extension of Wick's seminal work on transport of thermal neutrons by isotropic scattering to scattering with arbitrary anisotropy. How to do this for finite absorption and $\tildeω<1$ was described in our previous paper (arXiv:2205.09713v2). But those methods fail for conservative scattering, when $\tilde ω= 1$. Here we show that minor modifications to the fundamental $2n$-scattering theory for $\tildeω<1$ make it suitable for $\tildeω= 1$.