论文标题
在农业应用中转移学习的力量:Agrinet
The Power of Transfer Learning in Agricultural Applications: AgriNet
论文作者
论文摘要
深度学习和转移学习的进步为农业的各种自动化分类任务铺平了道路,包括植物疾病,害虫,杂草和植物物种检测。但是,农业自动化仍然面临着各种挑战,例如数据集的大小和缺乏植物域特异性预处理模型。特定于域的预审特模型显示了各种计算机视觉任务的最先进的表现,包括面部识别和医学成像诊断。在本文中,我们提出了Agrinet数据集,该数据集是来自19个地理位置的160k农业图像的集合,几个图像标题和423类植物物种和疾病。我们还介绍了Agrinet模型,这是五个ImageNet架构上的一组预审计的模型:VGG16,VGG19,Inception-V3,InceptionResnet-V2和Xception。 Agrinet-VGG19的分类准确性最高,为94%,最高的F1分数为92%。 Additionally, all proposed models were found to accurately classify the 423 classes of plant species, diseases, pests, and weeds with a minimum accuracy of 87% for the Inception-v3 model.Finally, experiments to evaluate of superiority of AgriNet models compared to ImageNet models were conducted on two external datasets: pest and plant diseases dataset from Bangladesh and a plant diseases dataset from克什米尔。
Advances in deep learning and transfer learning have paved the way for various automation classification tasks in agriculture, including plant diseases, pests, weeds, and plant species detection. However, agriculture automation still faces various challenges, such as the limited size of datasets and the absence of plant-domain-specific pretrained models. Domain specific pretrained models have shown state of art performance in various computer vision tasks including face recognition and medical imaging diagnosis. In this paper, we propose AgriNet dataset, a collection of 160k agricultural images from more than 19 geographical locations, several images captioning devices, and more than 423 classes of plant species and diseases. We also introduce AgriNet models, a set of pretrained models on five ImageNet architectures: VGG16, VGG19, Inception-v3, InceptionResNet-v2, and Xception. AgriNet-VGG19 achieved the highest classification accuracy of 94 % and the highest F1-score of 92%. Additionally, all proposed models were found to accurately classify the 423 classes of plant species, diseases, pests, and weeds with a minimum accuracy of 87% for the Inception-v3 model.Finally, experiments to evaluate of superiority of AgriNet models compared to ImageNet models were conducted on two external datasets: pest and plant diseases dataset from Bangladesh and a plant diseases dataset from Kashmir.