论文标题
新的量子自旋透视和量子几何的几何操作员
New Quantum Spin Perspective and Geometrical Operators of Quantum Geometry
论文作者
论文摘要
在本文中,我们提出了一个新的量子自旋(角动量)的新观点,其中boltzmann常数\(k_β\),planck \(t_ {p} \),planck mass \(m_ {p} \)和planck art ang \(planck artem \(p} \(J \)。借助这一新观点,我们修改了区域和量运算符的方程式。在量子几何形状中,对于\(so(3)\)组,角动量运算符\(j^{k} \)是\(k \)th lie组生成器\(t^{k} \);因此,\(t^{k} \ equiv j^{k} \)。因此,量子自旋的新视角可以直接适用于量子几何形状。从数据中,区域运算符的值\(\ hat {a} _ {s} \)以\(n^{2} \)的形式增加,以离散的方式暗示该区域操作员的离散频谱,类似于该区域运营商的实际公式。该观点在这些几何操作员的方程式内提供了自动校正或自动平衡机制。在量子重度尺度上,这意味着\(t_ {p} \),\(m_ {p} \)和\(l_ {p}^{2} \)的相互小变化以这种方式发生,以至于\(\ hbar \ \ \),\ _ {p} \ \ {和\(\ hat {v} _ {s} \)对于\(j_ {i} \)的值仍然不变。几何操作员中降低的普朗克常数\(\ hbar \)的恒定性可以提供一种方法,可以理解普朗克量表向核或原子量表的平滑过渡。
In this paper, we propose a new perspective of quantum spin (angular momentum) in which the Boltzmann constant \(k_β\), Planck temperature \(T_{P}\), Planck mass \(m_{P}\) and Planck area \(l_{P}^{2}\) are the integral part of the total angular momentum \(J\). With the aid of this new perspective, we modify the equation of the area and volume operator. In the quantum geometry, for \(SO(3)\) group, the angular momentum operators \(J^{k}\) is the \(k\)th Lie group generator \(T^{k}\); hence, \(T^{k} \equiv J^{k}\). Therefore, new perspective of quantum spin can be directly applicable to quantum geometry. From data, the value of the area operator \(\hat{A}_{S}\) increases with \(n^{2}\) in discrete way that suggests discrete spectrum of the area operator similar to the actual formula of the area operator. This perspective provides an auto-correct or auto-balance mechanism within the equation of these geometrical operators. At the quantum gravity scale, it means that the mutual small change in \(T_{P}\), \(m_{P}\), and \(l_{P}^{2}\) occur in such a way that \(\hbar\), \(l_{P}\) and \(\hat{A}_{S}\) and \( \hat{V}_{S}\) remain invariant for a value of \(j_{i}\). The constancy of the reduced Planck constant \(\hbar\) in the geometrical operators can provide a way through which smooth transition of the Planck scale to the nuclear or the atomic scale can be understood.