论文标题
Chebyshev内态的动力学在某些仿期代数品种上
Dynamics of Chebyshev endomorphisms on some affine algebraic varieties
论文作者
论文摘要
一个变量中的Chebyshev多项式是复合物1空间上的典型混沌图。复杂N空间A上的Chebyshev内态f也很混乱。内态f会在商A/G上诱导映射,其中G是2(n+1)的二面体组。使用不变理论,我们将A/G作为复杂的M空间中的仿射亚变量X嵌入。然后,我们在X上有态度g。 当n = 2和3时,我们研究G的混沌特性。
Chebyshev polynomials in one variable are typical chaotic maps on the complex 1-space. Chebyshev endomorphisms f on the complex n-space A are also chaotic. The endomorphisms f induce mappings on the quotient space A/G, where G is the dihedral group of order 2(n+1). Using invariant theory we embed A/G as an affine subvariety X in the complex m-space. Then we have morphisms g on X. We study the chaotic properties of g when n = 2 and 3.