论文标题

部分可观测时空混沌系统的无模型预测

Learning-based Autonomous Channel Access in the Presence of Hidden Terminals

论文作者

Shao, Yulin, Cai, Yucheng, Wang, Taotao, Guo, Ziyang, Liu, Peng, Luo, Jiajun, Gunduz, Deniz

论文摘要

我们考虑自主通道访问(AutoCA)的问题,其中一组终端试图以分布式方式通过通用无线通道通过访问点(AP)发现通信策略。由于拓扑不规则和终端的通信范围有限,因此对AutoCA的实用挑战是隐藏的终端问题,在无线网络中臭名昭著,可以使吞吐量和延迟性能恶化。为了应对挑战,本文提出了一种新的多代理深钢筋学习范式,该学习范式被称为Madrl-HT,在存在隐藏终端的情况下为Autoca量身定制。 Madrl-HT利用拓扑见解并将每个终端的观察空间转变为独立于终端数量的可扩展形式。为了弥补部分可观察性,我们提出了一种外观机制,以便终端可以从载体感知的通道状态下推断其隐藏终端的行为,并从AP中推断出其反馈。提出了一个基于窗口的全球奖励功能,从而指示终端在学习过程中平衡终端的传输机会,以最大程度地提高系统吞吐量。广泛的数值实验验证了我们的解决方案基准的优越性能,并通过避免碰撞(CSMA/CA)方案对传统载体 - 固定多重访问。

We consider the problem of autonomous channel access (AutoCA), where a group of terminals tries to discover a communication strategy with an access point (AP) via a common wireless channel in a distributed fashion. Due to the irregular topology and the limited communication range of terminals, a practical challenge for AutoCA is the hidden terminal problem, which is notorious in wireless networks for deteriorating the throughput and delay performances. To meet the challenge, this paper presents a new multi-agent deep reinforcement learning paradigm, dubbed MADRL-HT, tailored for AutoCA in the presence of hidden terminals. MADRL-HT exploits topological insights and transforms the observation space of each terminal into a scalable form independent of the number of terminals. To compensate for the partial observability, we put forth a look-back mechanism such that the terminals can infer behaviors of their hidden terminals from the carrier sensed channel states as well as feedback from the AP. A window-based global reward function is proposed, whereby the terminals are instructed to maximize the system throughput while balancing the terminals' transmission opportunities over the course of learning. Extensive numerical experiments verified the superior performance of our solution benchmarked against the legacy carrier-sense multiple access with collision avoidance (CSMA/CA) protocol.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源