论文标题
O信息的梯度:高阶依赖性的低阶描述符
Gradients of O-information: low-order descriptors of high-order dependencies
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
O-information is an information-theoretic metric that captures the overall balance between redundant and synergistic information shared by groups of three or more variables. To complement the global assessment provided by this metric, here we propose the gradients of the O-information as low-order descriptors that can characterise how high-order effects are localised across a system of interest. We illustrate the capabilities of the proposed framework by revealing the role of specific spins in Ising models with frustration, and on practical data analysis on US macroeconomic data. Our theoretical and empirical analyses demonstrate the potential of these gradients to highlight the contribution of variables in forming high-order informational circuits