论文标题
部分可观测时空混沌系统的无模型预测
Mirror Complementary Transformer Network for RGB-thermal Salient Object Detection
论文作者
论文摘要
RGB-thermal显着对象检测(RGB-T SOD)旨在定位对齐可见的和热红外图像对的共同突出对象,并准确地分割所有属于这些对象的像素。由于对热图像的照明条件不敏感,在夜间和复杂背景等具有挑战性的场景中,这是有希望的。因此,RGB-T SOD的关键问题是使两种方式的特征相互补充并互相调整,因为不可避免的是,由于极端光条件和热交叉等挑战性的场景,RGB-T图像对失败的任何方式都不可避免。在本文中,我们为RGB-T SOD提出了一个新颖的镜子互补变压器网络(MCNET)。具体而言,我们将基于变压器的特征提取模块引入RGB和热图像的有效提取分层特征。然后,通过基于注意力的特征相互作用和基于串行的多尺度扩张卷积(SDC)特征融合模块,提出的模型实现了低级特征的互补相互作用以及深度特征的语义融合。最后,基于镜子互补结构,即使是一种模态也可以准确地提取两种方式的显着区域也是无效的。为了证明在现实世界中具有挑战性的场景下提出的模型的鲁棒性,我们基于自动驾驶域中使用的大型公共语义分段RGB-T数据集建立了一种新颖的RGB-T SOD数据集VT723。基准和VT723数据集上的昂贵实验表明,所提出的方法优于最先进的方法,包括基于CNN的方法和基于变压器的方法。该代码和数据集将在以后在https://github.com/jxr326/swinmcnet上发布。
RGB-thermal salient object detection (RGB-T SOD) aims to locate the common prominent objects of an aligned visible and thermal infrared image pair and accurately segment all the pixels belonging to those objects. It is promising in challenging scenes such as nighttime and complex backgrounds due to the insensitivity to lighting conditions of thermal images. Thus, the key problem of RGB-T SOD is to make the features from the two modalities complement and adjust each other flexibly, since it is inevitable that any modalities of RGB-T image pairs failure due to challenging scenes such as extreme light conditions and thermal crossover. In this paper, we propose a novel mirror complementary Transformer network (MCNet) for RGB-T SOD. Specifically, we introduce a Transformer-based feature extraction module to effective extract hierarchical features of RGB and thermal images. Then, through the attention-based feature interaction and serial multiscale dilated convolution (SDC) based feature fusion modules, the proposed model achieves the complementary interaction of low-level features and the semantic fusion of deep features. Finally, based on the mirror complementary structure, the salient regions of the two modalities can be accurately extracted even one modality is invalid. To demonstrate the robustness of the proposed model under challenging scenes in real world, we build a novel RGB-T SOD dataset VT723 based on a large public semantic segmentation RGB-T dataset used in the autonomous driving domain. Expensive experiments on benchmark and VT723 datasets show that the proposed method outperforms state-of-the-art approaches, including CNN-based and Transformer-based methods. The code and dataset will be released later at https://github.com/jxr326/SwinMCNet.