论文标题

自适应suppodular最大化的群体平等

Group Equality in Adaptive Submodular Maximization

论文作者

Tang, Shaojie, Yuan, Jing

论文摘要

在本文中,我们研究了在非自适应和适应性环境下受到群体平等限制的经典下管最大化问题。已经表明,许多机器学习应用程序的效用函数,包括数据汇总,影响社交网络中的最大化以及个性化的建议,都满足了子二次性的属性。因此,可以在许多应用程序的核心中找到受到各种限制的最大化函数。在高级别上,次管最大化旨在选择一组大多数代表性项目(例如,数据点)。但是,大多数现有算法的设计并未包含公平的约束,从而导致某些特定组的不足或过分代表。这促使我们研究了群体平等的suppodular最大化问题,我们旨在选择一组项目,以最大化(可能是非单调的)supproular效用功能。为此,我们为此问题开发了第一个常数因子近似算法。我们的算法的设计足够强大,可以扩展到更复杂的自适应设置下解决supporular的最大化问题。此外,我们将研究进一步扩展到纳入全球基数限制和其他公平符号。

In this paper, we study the classic submodular maximization problem subject to a group equality constraint under both non-adaptive and adaptive settings. It has been shown that the utility function of many machine learning applications, including data summarization, influence maximization in social networks, and personalized recommendation, satisfies the property of submodularity. Hence, maximizing a submodular function subject to various constraints can be found at the heart of many of those applications. On a high level, submodular maximization aims to select a group of most representative items (e.g., data points). However, the design of most existing algorithms does not incorporate the fairness constraint, leading to under- or over-representation of some particular groups. This motivates us to study the submodular maximization problem with group equality, where we aim to select a group of items to maximize a (possibly non-monotone) submodular utility function subject to a group equality constraint. To this end, we develop the first constant-factor approximation algorithm for this problem. The design of our algorithm is robust enough to be extended to solving the submodular maximization problem under a more complicated adaptive setting. Moreover, we further extend our study to incorporating a global cardinality constraint and other fairness notations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源