论文标题

前级系统的对比信息传输

Contrastive Information Transfer for Pre-Ranking Systems

论文作者

Cao, Yue, Zhou, XiaoJiang, Huang, Peihao, Xiao, Yao, Chen, Dayao, Chen, Sheng

论文摘要

实际搜索和推荐系统通常采用多阶段排名架构,包括匹配,预先排名,排名和重新排名。以前的作品主要关注排名阶段,而很少关注前阶段。在本文中,我们专注于从排名到预级阶段的信息传输。我们提出了一个新的对比信息传输(CIT)框架,以将有用的信息从排名模型转移到预先级别的模型。我们训练前级模型,以区分带有对比目标的一对正面和负面对。结果,前级模型可以在排名模型的表示中充分利用丰富的信息。 CIT框架还具有减轻选择偏差并改善召回指标的性能的优势,这对于预级模型至关重要。我们进行了广泛的实验,包括离线数据集和在线A/B测试。实验结果表明,与竞争模型相比,CIT取得了优越的结果。此外,在世界上最大的电子商务平台之一进行的严格在线A/B测试表明,拟议的模型可在CTR上提高0.63 \%的改进,VBR上有1.64 \%的改进。拟议的模型现在已在线部署,并为该系统的主要流量提供了贡献,贡献了显着的业务增长。

Real-word search and recommender systems usually adopt a multi-stage ranking architecture, including matching, pre-ranking, ranking, and re-ranking. Previous works mainly focus on the ranking stage while very few focus on the pre-ranking stage. In this paper, we focus on the information transfer from ranking to pre-ranking stage. We propose a new Contrastive Information Transfer (CIT) framework to transfer useful information from ranking model to pre-ranking model. We train the pre-ranking model to distinguish the positive pair of representation from a set of positive and negative pairs with a contrastive objective. As a consequence, the pre-ranking model can make full use of rich information in ranking model's representations. The CIT framework also has the advantage of alleviating selection bias and improving the performance of recall metrics, which is crucial for pre-ranking models. We conduct extensive experiments including offline datasets and online A/B testing. Experimental results show that CIT achieves superior results than competitive models. In addition, a strict online A/B testing at one of the world's largest E-commercial platforms shows that the proposed model achieves 0.63\% improvements on CTR and 1.64\% improvements on VBR. The proposed model now has been deployed online and serves the main traffic of this system, contributing a remarkable business growth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源