论文标题

深度旋转校正没有角度

Deep Rotation Correction without Angle Prior

论文作者

Nie, Lang, Lin, Chunyu, Liao, Kang, Liu, Shuaicheng, Zhao, Yao

论文摘要

并非每个人都可以配备专业摄影技巧和足够的拍摄时间,并且偶尔会有一些倾斜的图像。在本文中,我们提出了一项名为“旋转校正”的新的实用任务,以自动纠正倾斜度较高的倾斜度,条件是旋转角度未知的条件。可以轻松地将此任务集成到图像编辑应用程序中,从而使用户无需任何手动操作即可更正旋转的图像。为此,我们利用神经网络来预测可以在感知水平上扭曲倾斜图像的光流。然而,单个图像的像素光流量估计非常不稳定,尤其是在大角度倾斜图像中。为了增强其鲁棒性,我们提出了一种简单但有效的预测策略,以形成强大的弹性经线。特别是,我们首先回归可以转化为可靠的初始光学流的网格变形。然后,我们估算残留的光流,以促进我们的网络智能变形的灵活性,从而进一步纠正倾斜图像的细节。为了建立评估基准并训练学习框架,在场景和旋转角度上呈现了较大的多样性,呈现了全面的旋转校正数据集。广泛的实验表明,即使在没有角度的情况下,我们的算法也可以超越其他需要此事先的最先进的解决方案。代码和数据集可从https://github.com/nie-lang/rotationCorrection获得。

Not everybody can be equipped with professional photography skills and sufficient shooting time, and there can be some tilts in the captured images occasionally. In this paper, we propose a new and practical task, named Rotation Correction, to automatically correct the tilt with high content fidelity in the condition that the rotated angle is unknown. This task can be easily integrated into image editing applications, allowing users to correct the rotated images without any manual operations. To this end, we leverage a neural network to predict the optical flows that can warp the tilted images to be perceptually horizontal. Nevertheless, the pixel-wise optical flow estimation from a single image is severely unstable, especially in large-angle tilted images. To enhance its robustness, we propose a simple but effective prediction strategy to form a robust elastic warp. Particularly, we first regress the mesh deformation that can be transformed into robust initial optical flows. Then we estimate residual optical flows to facilitate our network the flexibility of pixel-wise deformation, further correcting the details of the tilted images. To establish an evaluation benchmark and train the learning framework, a comprehensive rotation correction dataset is presented with a large diversity in scenes and rotated angles. Extensive experiments demonstrate that even in the absence of the angle prior, our algorithm can outperform other state-of-the-art solutions requiring this prior. The code and dataset are available at https://github.com/nie-lang/RotationCorrection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源