论文标题
$ 4 $ - 类别中的附件连贯性
Coherence for adjunctions in a $4$-category
论文作者
论文摘要
我们在$ 4 $ - 类别中给出了连贯的相关性的定义,该类别由$ k $ - morphimisms的有限列表组成,价格为$ k \ leq 4 $,以及$ 4 $ - morphermphisms的方程式。我们证明,限制图从连贯的附件空间中以$ 4 $ - 类别为$ 1 $ - 莫尔底主义的空间,这些尺寸允许隔离是一种微不足道的振动。我们证明,与固定邻接数据的部分有关的其他限制图也是微不足道的纤维。我们对$ n $ - 类别中的连贯相邻的猜想描述。
We give a definition of a coherent adjunction in a $4$-category consisting of a finite list of $k$-morphisms for $k\leq 4$, plus equations beetween $4$-morphisms. We prove that the restriction map from the space of coherent adjunctions in a $4$-category to the space of $1$-morphisms which admit an adjoint is a trivial fibration. We prove that other restriction maps related to fixing parts of the data of an adjunction are also trivial fibrations. We give a conjectural description of a coherent adjunction in an $n$-category.