论文标题
使用流行病学裂纹渗透模型对LCF故障时间进行概率建模
Probabilistic Modeling of LCF Failure Times Using an Epidemiological Crack Percolation Model
论文作者
论文摘要
标准化低周期疲劳(LCF)实验的分析表明,故障时间广泛散射。此外,机械组件通常在达到确定性故障时间之前失败。克服这些问题的可能性是考虑概率失败时间。我们的概率生活预测方法基于金属的微观结构。由于我们专注于镍碱合金,因此我们考虑具有随机定向的FCC晶粒的粗粒度微观结构。这会导致每种谷物中随机分布的Schmid因子和不同的各向异性应力。为了获得裂纹的开始时间,我们使用棺材 - 曼森·巴斯奎(Coffin-Manson-Basquin)和朗伯格(Ramberg-osgood)方程式在用概率schmid因子校正的应力上。 使用这些单粒裂纹启动时间,我们在多种晶粒上开发了一个流行病学裂纹的生长模型。在这种介质裂纹渗透模型中,破裂的晶粒诱导相邻晶粒的应力增加。使用根据有限元模拟生成的数据训练的机器学习模型实现了这种压力增加。根据多模式应力强度因子的故障标准评估所得的裂纹簇。从产生的故障时间开始,我们使用蒙特卡洛框架计算出依赖表面的危害率。我们将获得的故障时间分布与LCF实验的数据进行了比较,并找到了预测和测量的散点带的良好巧合。
The analysis of standardized low cycle fatigue (LCF) experiments shows that the failure times widely scatter. Furthermore, mechanical components often fail before the deterministic failure time is reached. A possibility to overcome these problems is to consider probabilistic failure times. Our approach for probabilistic life prediction is based on the microstructure of the metal. Since we focus on nickel-base alloys we consider a coarse grained microstructure, with random oriented FCC grains. This leads to random distributed Schmid factors and different anisotropic stress in each grain. To gain crack initiation times, we use Coffin-Manson- Basquin and Ramberg-Osgood equation on stresses corrected with probabilistic Schmid factors. Using these single grain crack initiation times, we have developed an epidemiological crack growth model over multiple grains. In this mesoscopic crack percolation model, cracked grains induce a stress increase in neighboring grains. This stress increase is realized using a machine learning model trained on data generated from finite element simulations. The resulting crack clusters are evaluated with a failure criterion based on a multimodal stress intensity factor. From the generated failure times, we calculate surface dependent hazard rates using a Monte Carlo framework. We compare the obtained failure time distributions to data from LCF experiments and find good coincidence of predicted and measured scatter bands.