论文标题

关于豆荚和傅立叶模式之间的差异

On the Discrepancies between POD and Fourier Modes on Aperiodic Domains

论文作者

Hodžić, Azur, Olesen, Peder J., Velte, Clara M.

论文摘要

研究了傅里叶分析与适当的正交分解(POD)的应用。在最近已称为光谱豆荚(SPOD)的湍流分解方法中,傅立叶模式被视为沿均质 - 周期性或均质坐标的第二种弗雷德霍尔姆积分方程的解决方案。在目前的工作中,挑战了POD模式正式收敛到傅立叶模式以增加域长度的概念。数值结果表明,沿\ textit {局部}沿\ textIt {局部}翻译不变的坐标之间的差异与所讨论的内核的泰勒宏观/微观尺度比率(MMSR)耦合。对于较小的MMSR,观察到增加的差异,这是雷诺数低流量的特征。据观察,特征光的渐近收敛速率与所讨论的核的确切分析傅立叶光谱的相应收敛速率与所讨论的相应的收敛速率匹配 - 即使对于极小的域和小的MMSR,相应的DFT光谱也遭受了窗口效果的巨大损失。这些结果表明,POD和傅立叶模式之间的累积差异在产生来自无限域中翻译不变核的傅立叶变换预期的光谱收敛速率方面发挥了作用。

The application of Fourier analysis in combination with the Proper Orthogonal Decomposition (POD) is investigated. In this approach to turbulence decomposition, which has recently been termed Spectral POD (SPOD), Fourier modes are considered as solutions to the corresponding Fredholm integral equation of the second kind along homogeneous-periodic or homogeneous coordinates. In the present work, the notion that the POD modes formally converge to Fourier modes for increasing domain length is challenged. Numerical results indicate that the discrepancy between POD and Fourier modes along \textit{locally} translationally invariant coordinates is coupled to the Taylor macro/micro scale ratio (MMSR) of the kernel in question. Increasing discrepancies are observed for smaller MMSRs, which are characteristic of low Reynolds number flows. It is observed that the asymptotic convergence rate of the eigenspectrum matches the corresponding convergence rate of the exact analytical Fourier spectrum of the kernel in question - even for extremely small domains and small MMSRs where the corresponding DFT spectra suffer heavily from windowing effects. These results indicate that the accumulated discrepancies between POD and Fourier modes play a role in producing the spectral convergence rates expected from Fourier transforms of translationally invariant kernels on infinite domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源