论文标题
非线性时间序列模型的自适应深度学习
Adaptive deep learning for nonlinear time series models
论文作者
论文摘要
在本文中,我们开发了一种使用深神经网络(DNNS)的非平稳和非线性时间序列模型的自适应非参数估计的一般理论。我们首先考虑两种类型的DNN估计量,非含量和稀疏的DNN估计器,并为一般的非平稳时间序列建立其泛化误差界限。然后,我们得出最小值下限,以估计属于包括非线性通用添加剂AR,单个索引和阈值AR模型的广泛非线性自回旋(AR)模型的平均功能。在结果的基础上,我们表明稀疏的DNN估计量具有自适应性,并达到了许多非线性AR模型的最小值最佳速率。通过数值模拟,我们证明了DNN方法在估计具有内在的低维结构和不连续或粗略均值功能的非线性AR模型的有用性,这与我们的理论一致。
In this paper, we develop a general theory for adaptive nonparametric estimation of the mean function of a non-stationary and nonlinear time series model using deep neural networks (DNNs). We first consider two types of DNN estimators, non-penalized and sparse-penalized DNN estimators, and establish their generalization error bounds for general non-stationary time series. We then derive minimax lower bounds for estimating mean functions belonging to a wide class of nonlinear autoregressive (AR) models that include nonlinear generalized additive AR, single index, and threshold AR models. Building upon the results, we show that the sparse-penalized DNN estimator is adaptive and attains the minimax optimal rates up to a poly-logarithmic factor for many nonlinear AR models. Through numerical simulations, we demonstrate the usefulness of the DNN methods for estimating nonlinear AR models with intrinsic low-dimensional structures and discontinuous or rough mean functions, which is consistent with our theory.