论文标题

长波浪 - 短波yajima-oikawa-newell模型的周期性和孤立波解决方案

Periodic and solitary wave solutions of the long wave-short wave Yajima-Oikawa-Newell model

论文作者

Caso-Huerta, Marcos, Degasperis, Antonio, da Silva, Priscila Leal, Lombardo, Sara, Sommacal, Matteo

论文摘要

描述长波浪波谐振相互作用的模型具有许多物理应用,从流体动力学到等离子体物理。我们在这里考虑Yajima-Oikawa-Newell(YON)模型,该模型最近引入了结合了两个长波浪波浪的相互作用项,可集成模型,一个由Yajima-oikawa提出的,另一个由Newell提出。新的YON模型包含两个任意耦合常数,对于这些耦合常数的任何值,它仍然可以整合 - 在拥有LAX对的意义上。它减少到Yajima-Oikawa或Newell Systems,以进行这两个参数的特殊选择。我们构建了周期性和孤立波解决方案的家族,这些家族显示出很长的波浪产生。我们还计算了许多保护法的明确表达。

Models describing long wave-short wave resonant interactions have many physical applications from fluid dynamics to plasma physics. We consider here the Yajima-Oikawa-Newell (YON) model, which has been recently introduced combining the interaction terms of two long wave-short wave, integrable models, one proposed by Yajima-Oikawa, and the other one by Newell. The new YON model contains two arbitrary coupling constants and it is still integrable - in the sense of possessing a Lax pair - for any values of these coupling constants. It reduces to the Yajima-Oikawa or the Newell systems for special choices of these two parameters. We construct families of periodic and solitary wave solutions, which display the generation of very long waves. We also compute the explicit expression of a number of conservation laws.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源