论文标题

部分可观测时空混沌系统的无模型预测

Aspect-Based Sentiment Analysis using Local Context Focus Mechanism with DeBERTa

论文作者

Zhao, Tianyu, Du, Junping, Xue, Zhe, Li, Ang, Guan, Zeli

论文摘要

文本情感分析(也称为意见挖掘)是对实体表达的人们观点,评估,态度和情感的计算的研究。文本情感分析可以分为文本级别的情感分析,森林级别的情感分析和方面级别的情感分析。基于方面的情感分析(ABSA)是情感分析领域中的精细任务,该任务旨在预测各个方面的极性。训练前神经模型的研究显着改善了许多自然语言处理任务的性能。近年来,训练模型(PTM)已在ABSA中应用。因此,有一个问题,即PTM是否包含ABSA足够的句法信息。在本文中,我们探讨了最近的Deberta模型(解码增强的BERT,并引起注意),以解决基于方面的情感分析问题。 Deberta是一种基于变形金刚的神经语言模型,它使用自我监督的学习来预先培训大量原始文本语料库。基于局部环境重点(LCF)机制,通过整合Deberta模型,我们目的是基于方面的情感分析的多任务学习模型。该实验导致了Semeval-2014最常用的笔记本电脑和餐厅数据集,而ACL Twitter数据集则表明,具有Deberta的LCF机制具有显着改善。

Text sentiment analysis, also known as opinion mining, is research on the calculation of people's views, evaluations, attitude and emotions expressed by entities. Text sentiment analysis can be divided into text-level sentiment analysis, sen-tence-level sentiment analysis and aspect-level sentiment analysis. Aspect-Based Sentiment Analysis (ABSA) is a fine-grained task in the field of sentiment analysis, which aims to predict the polarity of aspects. The research of pre-training neural model has significantly improved the performance of many natural language processing tasks. In recent years, pre training model (PTM) has been applied in ABSA. Therefore, there has been a question, which is whether PTMs contain sufficient syntactic information for ABSA. In this paper, we explored the recent DeBERTa model (Decoding-enhanced BERT with disentangled attention) to solve Aspect-Based Sentiment Analysis problem. DeBERTa is a kind of neural language model based on transformer, which uses self-supervised learning to pre-train on a large number of original text corpora. Based on the Local Context Focus (LCF) mechanism, by integrating DeBERTa model, we purpose a multi-task learning model for aspect-based sentiment analysis. The experiments result on the most commonly used the laptop and restaurant datasets of SemEval-2014 and the ACL twitter dataset show that LCF mechanism with DeBERTa has significant improvement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源