论文标题

带有光子和原子记忆的分布式量子计算

Distributed quantum computing with photons and atomic memories

论文作者

Oh, Eun, Lai, Xuanying, Wen, Jianming, Du, Shengwang

论文摘要

通用量子计算的承诺需要可扩展的单一和问题间控制相互作用。当前,三个用于量子计算的领先候选平台基于超导电路,被困的离子和中性原子阵列。但是,这些系统与环境和控制噪声具有很强的相互作用,这些噪声引入了量子状态和栅极操作的变质。或者,光子与环境有很好的脱钩,并且具有分布式量子计算的速度和时机的优势。光子系统已经证明了解决特定棘手问题(例如玻色子采样)的能力,但是实际上可扩展的通用通用量子计算解决方案面临挑战,因为单个光子很难与另一个光子“对话”。在这里,我们提出了一种基于光子和基于原子汇编量子记忆的通用分布式量子计算方案。凭借已建立的光子优势,我们通过将光子量子量动数转换为量子记忆状态并采用Rydberg封锁来进行控制的栅极操作,从而介导了两Q量的非线性相互作用。我们进一步证明了该方案的空间和时间可扩展性。我们的结果表明,光子原子网络混合方法可能是通用量子计算的替代解决方案。

The promise of universal quantum computing requires scalable single- and inter-qubit control interactions. Currently, three of the leading candidate platforms for quantum computing are based on superconducting circuits, trapped ions, and neutral atom arrays. However, these systems have strong interaction with environmental and control noises that introduce decoherence of qubit states and gate operations. Alternatively, photons are well decoupled from the environment, and have advantages of speed and timing for distributed quantum computing. Photonic systems have already demonstrated capability for solving specific intractable problems like Boson sampling, but face challenges for practically scalable universal quantum computing solutions because it is extremely difficult for a single photon to "talk" to another deterministically. Here, we propose a universal distributed quantum computing scheme based on photons and atomic-ensemble-based quantum memories. Taking the established photonic advantages, we mediate two-qubit nonlinear interaction by converting photonic qubits into quantum memory states and employing Rydberg blockade for controlled gate operation. We further demonstrate spatial and temporal scalability of this scheme. Our results show photon-atom network hybrid approach can be an alternative solution to universal quantum computing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源