论文标题
数据完整性错误在网络系统中的本地化本地化,缺少数据
Data Integrity Error Localization in Networked Systems with Missing Data
论文作者
论文摘要
最新的网络故障诊断系统集中在数据中心网络上,可以部署复杂的测量系统以获取路由信息并确保网络覆盖范围,以实现准确而快速的故障定位。在本文中,我们针对支持数据密集型分布式应用程序的广阔区域网络。我们首先提出了一个新的多输出预测模型,该模型直接映射应用程序级别的观察值以本地化系统组件故障。实际上,这种以申请为中心的方法可能会面临缺少的数据挑战,因为由于不完整或丢失的测量值,可能缺少某些输入(功能)数据(功能)数据。我们表明,提出的预测模型自然允许{\ it Multivariate}插补恢复缺失的数据。我们评估了多种插补算法,并表明在大规模网络中可以显着提高预测性能。据我们所知,这是关于缺少数据问题并应用网络故障本地化的插补技术的第一项研究。
Most recent network failure diagnosis systems focused on data center networks where complex measurement systems can be deployed to derive routing information and ensure network coverage in order to achieve accurate and fast fault localization. In this paper, we target wide-area networks that support data-intensive distributed applications. We first present a new multi-output prediction model that directly maps the application level observations to localize the system component failures. In reality, this application-centric approach may face the missing data challenge as some input (feature) data to the inference models may be missing due to incomplete or lost measurements in wide area networks. We show that the presented prediction model naturally allows the {\it multivariate} imputation to recover the missing data. We evaluate multiple imputation algorithms and show that the prediction performance can be improved significantly in a large-scale network. As far as we know, this is the first study on the missing data issue and applying imputation techniques in network failure localization.