论文标题

图像Amodal完成:调查

Image Amodal Completion: A Survey

论文作者

Ao, Jiayang, Ke, Qiuhong, Ehinger, Krista A.

论文摘要

现有的计算机视觉系统可以与人类竞争,以理解对象的可见部分,但在描绘部分遮挡物体的无形部分时,仍然远远差一点人类。图像Amodal的完成旨在使计算机具有类似人类的Amodal完成功能,以了解完整的对象,尽管该对象被部分遮住。这项调查的主要目的是对图像Amodal完成领域的研究热点,关键技术和未来趋势提供直观的理解。首先,我们对这个新兴领域的最新文献进行了全面的评论,探讨了图像Amodal完成中的三个关键任务,包括Amodal形状完成,Amodal外观完成和订单感知。然后,我们检查了与图像Amodal完成相关的流行数据集及其共同的数据收集方法和评估指标。最后,我们讨论了现实世界中的应用程序和未来的研究方向,以实现图像的完成,从而促进了读者对现有技术和即将到来的研究趋势的挑战的理解。

Existing computer vision systems can compete with humans in understanding the visible parts of objects, but still fall far short of humans when it comes to depicting the invisible parts of partially occluded objects. Image amodal completion aims to equip computers with human-like amodal completion functions to understand an intact object despite it being partially occluded. The main purpose of this survey is to provide an intuitive understanding of the research hotspots, key technologies and future trends in the field of image amodal completion. Firstly, we present a comprehensive review of the latest literature in this emerging field, exploring three key tasks in image amodal completion, including amodal shape completion, amodal appearance completion, and order perception. Then we examine popular datasets related to image amodal completion along with their common data collection methods and evaluation metrics. Finally, we discuss real-world applications and future research directions for image amodal completion, facilitating the reader's understanding of the challenges of existing technologies and upcoming research trends.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源