论文标题
一种随机游戏掩盖故障耐受性的方法:一分化和量化
A Stochastic Game Approach to Masking Fault-Tolerance: Bisimulation and Quantification
论文作者
论文摘要
我们引入了基于概率分配的变体(命名为掩盖模拟)的概率过渡系统之间掩盖断层耐受性的正式概念。我们还提供相应的概率游戏表征。即使这些游戏可能是无限的,我们还是提出了一种表示它们的象征方式,以便在两个概率过渡系统之间存在掩盖模拟,可以在多项式时间内确定。我们使用这种掩盖的概念来量化几乎不弥补的失败系统所表现出的掩盖断层耐受性的水平,即最终以概率1的失败的系统。可以通过求解功能方程的集合来计算几乎不充实的失败系统的掩盖故障耐受性水平。我们在最小化玩家以强大的公平方式(模仿公平环境的想法)的环境中生成了这个指标,并将我们的研究限制为由于游戏的无限性质而将我们的研究限制为无记忆策略。我们在原型工具中实现了这些想法,并进行了实验评估。
We introduce a formal notion of masking fault-tolerance between probabilistic transition systems based on a variant of probabilistic bisimulation (named masking simulation). We also provide the corresponding probabilistic game characterization. Even though these games could be infinite, we propose a symbolic way of representing them, such that it can be decided in polynomial time if there is a masking simulation between two probabilistic transition systems. We use this notion of masking to quantify the level of masking fault-tolerance exhibited by almost-sure failing systems, i.e., those systems that eventually fail with probability 1. The level of masking fault-tolerance of almost-sure failing systems can be calculated by solving a collection of functional equations. We produce this metric in a setting in which the minimizing player behaves in a strong fair way (mimicking the idea of fair environments), and limit our study to memoryless strategies due to the infinite nature of the game. We implemented these ideas in a prototype tool, and performed an experimental evaluation.