论文标题
Pregan:以弱监督的gan排名为导向的段落排名
PReGAN: Answer Oriented Passage Ranking with Weakly Supervised GAN
论文作者
论文摘要
除了局部相关性之外,开放域的FACTOID问题的段落排名还需要一个通过包含答案的段落(答案)。尽管最近的一些研究将一些阅读能力纳入了排名者以说明答复性,但排名仍然受到该领域通常可用的训练数据的嘈杂性质的阻碍,该训练数据的嘈杂性质考虑了任何包含答案实体作为正样本的段落。但是,段落中的答案实体不一定与给定的问题有关。为了解决该问题,我们提出了一种基于生成对抗神经网络的通过重新疗法的称为\ ttt {pregan}的方法,除了局部相关性外,该方法还结合了关于答复性的歧视者。目的是强迫发电机对局部相关的段落进行排名,并包含答案。五个公共数据集的实验表明,\ ttt {pregan}可以更好地对适当的段落进行排名,从而提高质量检查系统的有效性,并在不使用外部数据的情况下优于现有方法。
Beyond topical relevance, passage ranking for open-domain factoid question answering also requires a passage to contain an answer (answerability). While a few recent studies have incorporated some reading capability into a ranker to account for answerability, the ranker is still hindered by the noisy nature of the training data typically available in this area, which considers any passage containing an answer entity as a positive sample. However, the answer entity in a passage is not necessarily mentioned in relation with the given question. To address the problem, we propose an approach called \ttt{PReGAN} for Passage Reranking based on Generative Adversarial Neural networks, which incorporates a discriminator on answerability, in addition to a discriminator on topical relevance. The goal is to force the generator to rank higher a passage that is topically relevant and contains an answer. Experiments on five public datasets show that \ttt{PReGAN} can better rank appropriate passages, which in turn, boosts the effectiveness of QA systems, and outperforms the existing approaches without using external data.