论文标题
用于COVID-19诊断的多尺度对齐和空间ROI模块
Multi-scale alignment and Spatial ROI Module for COVID-19 Diagnosis
论文作者
论文摘要
自首次报道以来,2019年冠状病毒病(Covid-19)已在全球范围内传播,并成为人类面临的健康危机。放射学成像技术,例如计算机断层扫描(CT)和胸部X射线成像(CXR)是诊断Covid-19的有效工具。但是,在CT和CXR图像中,感染区域仅占据图像的一小部分。一些整合大规模接受场的常见深度学习方法可能会导致图像细节的丧失,从而导致省略了COVID-19中的感兴趣区域(ROI),因此不适合进一步处理。为此,我们提出了一个深空金字塔池(D-SPP)模块,以在不同的分辨率上整合上下文信息,旨在有效地在COVID-19的不同尺度下提取信息。此外,我们提出了COVID-19感染检测(CID)模块,以引起人们对病变区域的注意,并从无关的信息中消除干扰。在四个CT和CXR数据集上进行的广泛实验表明,我们的方法在检测CT和CXR图像中检测COVID-19病变的准确性更高。它可以用作计算机辅助诊断工具,以帮助医生有效地诊断和筛选Covid-19。
Coronavirus Disease 2019 (COVID-19) has spread globally and become a health crisis faced by humanity since first reported. Radiology imaging technologies such as computer tomography (CT) and chest X-ray imaging (CXR) are effective tools for diagnosing COVID-19. However, in CT and CXR images, the infected area occupies only a small part of the image. Some common deep learning methods that integrate large-scale receptive fields may cause the loss of image detail, resulting in the omission of the region of interest (ROI) in COVID-19 images and are therefore not suitable for further processing. To this end, we propose a deep spatial pyramid pooling (D-SPP) module to integrate contextual information over different resolutions, aiming to extract information under different scales of COVID-19 images effectively. Besides, we propose a COVID-19 infection detection (CID) module to draw attention to the lesion area and remove interference from irrelevant information. Extensive experiments on four CT and CXR datasets have shown that our method produces higher accuracy of detecting COVID-19 lesions in CT and CXR images. It can be used as a computer-aided diagnosis tool to help doctors effectively diagnose and screen for COVID-19.