论文标题
置换组的花圈产品中的危险
Derangements in wreath products of permutation groups
论文作者
论文摘要
鉴于有限的组$ g $在套装$ x $中代表$δ_k(g,x)$表示$ g $中具有$ k $固定点$ x $的元素的比例。令$ \ mathrm {s} _n $表示对称组,该组作用于$ [n] = \ {1,2,\ dots,n \} $。对于$ a \ le \ mathrm {s} _m $和$ b \ le \ mathrm {s} _n $,排列的花环产品$ a \ wr b $具有两个自然动作,我们给出了两者的公式,$Δ_K($Δ_K(a \ wr b,a \ wr b,[m] {m] {\ times} {\ n n n n n n]和$Δ__ b,[m]^{[n]})$。我们证明,对于$ k = 0 $,这些比例的值在$ [Δ_0(b,[n]),1] $和$ [δ_0(a,[m]),1] $的间隔中密集。在进一步的结果中,我们提供了$Δ_0(g,[m]^{[n]})$的估计值,用于子组$ g \ leq \ leq \ mathrm {s} _m \ wr \ mathrm {s} s} _n $ conting $
Given a finite group $G$ acting on a set $X$ let $δ_k(G,X)$ denote the proportion of elements in $G$ that have exactly $k$ fixed points in $X$. Let $\mathrm{S}_n$ denote the symmetric group acting on $[n]=\{1,2,\dots,n\}$. For $A\le\mathrm{S}_m$ and $B\le\mathrm{S}_n$, the permutational wreath product $A\wr B$ has two natural actions and we give formulas for both, $δ_k(A\wr B,[m]{\times}[n])$ and $δ_k(A\wr B,[m]^{[n]})$. We prove that for $k=0$ the values of these proportions are dense in the intervals $[δ_0(B,[n]),1]$ and $[δ_0(A,[m]),1]$. Among further result, we provide estimates for $δ_0(G,[m]^{[n]})$ for subgroups $G\leq \mathrm{S}_m\wr\mathrm{S}_n$ containing $\mathrm{A}_m^{[n]}$.