论文标题
概括性撤离子空间
Generalised Evasive Subspaces
论文作者
论文摘要
我们介绍并探索了一个新的回避子空间的概念,相对于共享共同维度(最著名的部分差异)的集合集合。我们表明,这个概念概括了散射和逃避性的已知概念。我们建立了各种上限,以相对于任意部分差异,为回避子空间的维度建立了各个界限,从而为Desarguesian的差异提供了改进。我们还使用图理论方法以非构建方式为避孕空间建立了逃避空间的存在结果。我们得出的上限和下限具有精确的解释,作为某些组合几何形状的临界指数的边界。最后,我们研究了我们引入的回避空间的概念与等级代码的理论之间的联系,从而获得了覆盖半径上的新结果以及最小值矢量级别级代码的存在。
We introduce and explore a new concept of evasive subspace with respect to a collection of subspaces sharing a common dimension, most notably partial spreads. We show that this concept generalises known notions of subspace scatteredness and evasiveness. We establish various upper bounds for the dimension of an evasive subspace with respect to arbitrary partial spreads, obtaining improvements for the Desarguesian ones. We also establish existence results for evasive spaces in a non-constructive way, using a graph theory approach. The upper and lower bounds we derive have a precise interpretation as bounds for the critical exponent of certain combinatorial geometries. Finally, we investigate connections between the notion of evasive space we introduce and the theory of rank-metric codes, obtaining new results on the covering radius and on the existence of minimal vector rank-metric codes.