论文标题

在复杂的地形上学习快速而敏捷的四倍体运动

Learning fast and agile quadrupedal locomotion over complex terrain

论文作者

Chang, Xu, Zhang, Zhitong, An, Honglei, Ma, Hongxu, Wei, Qing

论文摘要

在本文中,我们提出了一个可靠的控制器,该控制器在一个真正的盲人四足机器人上实现了自然而稳定的快速运动。只有本体感受的信息,四倍的机器人可以以其身体长度的最大速度移动10倍,并且具有通过各种复杂地形的能力。通过无模型的增强学习,在模拟环境中训练控制器。在本文中,拟议的宽松邻里控制体系结构不仅可以保证学习率,而且还获得了一个易于转移到真正四倍的机器人的动作网络。我们的研究发现,在训练过程中存在数据对称性损失的问题,这导致学习控制器在左右对称的四倍体机器人结构上的性能不平衡,并提出了一个镜像世界神经网络来解决性能问题。由Mirror-World Network组成的学习控制器可以使机器人具有出色的反扰动能力。训练架构中没有使用特定的人类知识,例如脚部轨迹发生器。学识渊博的控制器可以协调机器人的步态频率和运动速度,并且与人工设计的控制器相比,运动模式更自然,更合理。我们的控制器具有出色的反扰动性能,并且具有良好的概括能力,可以达到从未学到的运动速度,并且从未见过的地形。

In this paper, we propose a robust controller that achieves natural and stably fast locomotion on a real blind quadruped robot. With only proprioceptive information, the quadruped robot can move at a maximum speed of 10 times its body length, and has the ability to pass through various complex terrains. The controller is trained in the simulation environment by model-free reinforcement learning. In this paper, the proposed loose neighborhood control architecture not only guarantees the learning rate, but also obtains an action network that is easy to transfer to a real quadruped robot. Our research finds that there is a problem of data symmetry loss during training, which leads to unbalanced performance of the learned controller on the left-right symmetric quadruped robot structure, and proposes a mirror-world neural network to solve the performance problem. The learned controller composed of the mirror-world network can make the robot achieve excellent anti-disturbance ability. No specific human knowledge such as a foot trajectory generator are used in the training architecture. The learned controller can coordinate the robot's gait frequency and locomotion speed, and the locomotion pattern is more natural and reasonable than the artificially designed controller. Our controller has excellent anti-disturbance performance, and has good generalization ability to reach locomotion speeds it has never learned and traverse terrains it has never seen before.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源