论文标题
通过GAIA DR3星形统计检测到的中子星和黑洞二进制样本样本
A Sample of Neutron Star and Black Hole Binaries Detected through Gaia DR3 Astrometry
论文作者
论文摘要
最新的Gaia数据发布凭借其精美的天文学精度,包括$ \ sim $$ 10^5 $ Astretric二进制文件,每个二进制文件都测量了轨道周期,偏心率和Thiele-Innes轨道参数。使用这些和对发光恒星的质量的估计,我们得出了伴侣恒星的质量,从中我们从长时间的轨道($ p _ {\ rm orb} \ sim {\ sim {\ rm yrs yrs} $)中确定了24个二进制文件的样本,并以高度可能托管大规模($ 1.4 $ m _ _ $ _ _ _ _ _ \ odot)。 (NS)或黑洞(BH)。这些二进制文件中的发光恒星往往是F-,G-和K型瓦,显着的一个热分子除外。这些八颗恒星中的后续光谱法没有证据表明白矮人或其他发光恒星污染。这些二进制文件中的黑暗伴侣的质量范围为1.35-2.7 $ m _ {\ odot} $,因此很可能包括NSS和BHS,之间没有显着的质量差距。此外,其中几个对象的质量为$ \ simeq $ 1.7 $ m _ {\ odot} $,类似于GW190425中至少一个合并紧凑的对象的质量。鉴于这些轨道太宽,无法发生大量积聚,因此该样本意味着某些NS天生很重($ \ gtrsim $ 1.5 $ M _ {\ odot} $)。此外,这些二进制文件中的低轨道速度($ \ Lessim $ 20 km s $^{ - 1} $)要求至少一些沉重的NSS受到低鼻踢,否则它们在核心崩溃期间会受到干扰。尽管在哈勃时期内,没有一个人会成为重力波源,但这些系统对于测试二进制进化理论非常有用。
With its exquisite astrometric precision, the latest Gaia data release includes $\sim$$10^5$ astrometric binaries, each of which have measured orbital periods, eccentricities, and the Thiele-Innes orbital parameters. Using these and an estimate of the luminous stars' masses, we derive the companion stars' masses, from which we identify a sample of 24 binaries in long period orbits ($P_{\rm orb}\sim{\rm yrs}$) with a high probability of hosting a massive ($>$1.4 $M_{\odot}$), dark companion: a neutron star (NS) or black hole (BH). The luminous stars in these binaries tend to be F-, G-, and K-dwarfs with the notable exception of one hot subdwarf. Follow-up spectroscopy of eight of these stars shows no evidence for contamination by white dwarfs or other luminous stars. The dark companions in these binaries span a mass range of 1.35-2.7 $M_{\odot}$ and therefore likely includes both NSs and BHs without a significant mass gap in between. Furthermore, the masses of several of these objects are $\simeq$1.7 $M_{\odot}$, similar to the mass of at least one of the merging compact objects in GW190425. Given that these orbits are too wide for significant mass accretion to have occurred, this sample implies that some NSs are born heavy ($\gtrsim$1.5 $M_{\odot}$). Additionally, the low orbital velocities ($\lesssim$20 km s$^{-1}$) of these binaries requires that at least some heavy NSs receive low natal kicks, otherwise they would have been disrupted during core collapse. Although none will become gravitational wave sources within a Hubble time, these systems will be exceptionally useful for testing binary evolution theory.