论文标题

关于$ \ Mathbb {C} $的合理性 - 分级顶点代数以及在共形流下的Weyl Vertex代数的应用

On rationality of $\mathbb{C}$-graded vertex algebras and applications to Weyl vertex algebras under conformal flow

论文作者

Barron, Katrina, Batistelli, Karina, Hunziker, Florencia Orosz, Tomic, Veronika Pedic, Yamskulna, Gaywalee

论文摘要

将朱代数用于特定类别的$ \ mathbb {c} $ - 分级顶点代数$ v $,我们证明,如果$ v $有限$ω$获得并满足合适的分级条件,那么$ v $,那么$ v $是理性的,即具有半含量的表示理论,具有半尺寸的zere zere zere zere zere zere zere zere zergra。在这里,$ω$表示$ v $中的向量通过降低分级的实际部分被歼灭。我们将结果应用于等级的一家Weyl顶点代数,具有共形元素$ω__$由$μ\ in \ mathbb {c} $参数化,并证明某些非直觉值的$μ$,这些顶点代数,这些dertex elgebras,它们是非智力级的,具有一个dimensiontion dimens zere zhue zhu的dimens zhuu。此外,我们将此结果推广到适当的$ \ mathbb {c} $ - 分级的weyl顶点代数的任意等级。

Using the Zhu algebra for a certain category of $\mathbb{C}$-graded vertex algebras $V$, we prove that if $V$ is finitely $Ω$-generated and satisfies suitable grading conditions, then $V$ is rational, i.e. has semi-simple representation theory, with one dimensional level zero Zhu algebra. Here $Ω$ denotes the vectors in $V$ that are annihilated by lowering the real part of the grading. We apply our result to the family of rank one Weyl vertex algebras with conformal element $ω_μ$ parameterized by $μ\in \mathbb{C}$, and prove that for certain non-integer values of $μ$, these vertex algebras, which are non-integer graded, are rational, with one dimensional level zero Zhu algebra. In addition, we generalize this result to appropriate $\mathbb{C}$-graded Weyl vertex algebras of arbitrary ranks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源