论文标题

结合局部轨道缩放校正和伯特 - 盐的方程,以获得准确的激发能

Combining Localized Orbital Scaling Correction and Bethe-Salpeter Equation for Accurate Excitation Energies

论文作者

Li, Jiachen, Jin, Ye, Su, Neil Qiang, Yang, Weitao

论文摘要

我们在伯特 - 盐盐方程(BSE)中应用了局部轨道缩放校正(LOSC),以预测分子的准确激发能。 LOSC系统地消除了密度函数近似中的离域误差,并且能够以相似或更好的方式近似近似准粒子(QP)能量,而计算成本却要少得多。来自LOSC的QP Energies,而不是常用的$ G_ {0} W_ {0} $和EV $ GW $,直接在BSE中使用。我们表明,BSE/LOSC方法的表现大大优于常用的BSE/$ G_ {0} W_ {0} $方法,用于预测具有不同字符的激发。对于包含价,电荷转移(CT)和Rydberg激发的Truhlar-Gagliardi测试集的计算,具有TAMM-DANCOFF近似值的BSE/LOSC提供了与时间相关密度功能理论(TDDDFT)和BSE/EV $ GW $的可比精度。为了计算Stein CT测试集和原子的Rydberg激发,BSE/LOSC的表现均优于BSE/$ G_ {0} W_ {0} $和TDDFT方法,而起始点依赖性降低。因此,BSE/LOSC是计算分子系统激发能的有前途有效的方法。

We applied localized orbital scaling correction (LOSC) in Bethe-Salpeter equation (BSE) to predict accurate excitation energies for molecules. LOSC systematically eliminates the delocalization error in the density functional approximation and is capable of approximating quasiparticle (QP) energies with accuracy similar or better than the $GW$ Green's function approach and with much less computational cost. The QP energies from LOSC instead of commonly used $G_{0}W_{0}$ and ev$GW$ are directly used in BSE. We show that the BSE/LOSC approach greatly outperforms the commonly used BSE/$G_{0}W_{0}$ approach for predicting excitations with different characters. For the calculations for Truhlar-Gagliardi test set containing valence, charge transfer (CT) and Rydberg excitations, BSE/LOSC with the Tamm-Dancoff approximation provides a comparable accuracy to time-dependent density functional theory (TDDFT) and BSE/ev$GW$. For the calculations of Stein CT test set and Rydberg excitations of atoms, BSE/LOSC considerably outperforms both BSE/$G_{0}W_{0}$ and TDDFT approaches with a reduced starting point dependence. BSE/LOSC is thus a promising and efficient approach to calculate excitation energies for molecular systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源