论文标题

使用多视图超声检查甲状腺癌分类的个性化诊断工具

Personalized Diagnostic Tool for Thyroid Cancer Classification using Multi-view Ultrasound

论文作者

Huang, Han, Dong, Yijie, Jia, Xiaohong, Zhou, Jianqiao, Ni, Dong, Cheng, Jun, Huang, Ruobing

论文摘要

在过去的几十年中,甲状腺癌的发生率在全球范围内一直在增加。准确和早期诊断可以及时治疗,并有助于避免过度诊断。在临床上,通常使用甲状腺超声从横向和纵向视图中评估结节。然而,甲状腺和病变的外观在各个个体之间可能会大不相同。从两种观点中识别关键诊断信息需要专业知识。此外,找到一种整合多视图信息的最佳方法也取决于临床医生的经验,并为准确的诊断增加了更加困难。为了解决这些问题,我们提出了一个个性化的诊断工具,可以为不同患者定制其决策过程。它由用于特征提取的多视图分类模块和一个个性化的加权分配网络,该网络可为不同视图生成最佳的加权。它还配备了自我监督的观察对比损失,以进一步改善对不同患者群体的稳健性。实验结果表明,所提出的框架可以更好地利用多视图信息并胜过竞争方法。

Over the past decades, the incidence of thyroid cancer has been increasing globally. Accurate and early diagnosis allows timely treatment and helps to avoid over-diagnosis. Clinically, a nodule is commonly evaluated from both transverse and longitudinal views using thyroid ultrasound. However, the appearance of the thyroid gland and lesions can vary dramatically across individuals. Identifying key diagnostic information from both views requires specialized expertise. Furthermore, finding an optimal way to integrate multi-view information also relies on the experience of clinicians and adds further difficulty to accurate diagnosis. To address these, we propose a personalized diagnostic tool that can customize its decision-making process for different patients. It consists of a multi-view classification module for feature extraction and a personalized weighting allocation network that generates optimal weighting for different views. It is also equipped with a self-supervised view-aware contrastive loss to further improve the model robustness towards different patient groups. Experimental results show that the proposed framework can better utilize multi-view information and outperform the competing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源