论文标题

共同资源动态分配的独立业力经济

A self-contained karma economy for the dynamic allocation of common resources

论文作者

Elokda, Ezzat, Bolognani, Saverio, Censi, Andrea, Dörfler, Florian, Frazzoli, Emilio

论文摘要

本文提出了业力机制,这是一种新颖的方法,可以在无限的时间内反复分配稀缺资源。例子包括确定在高峰需求期间要服务的乘车旅行请求,授予交叉路口或车道合并的通行权,或将互联网内容接纳到受监管的快速渠道。我们研究了这些问题的简化而有见地的表述,在这些问题上,每个人口的两个代理人都可以随机匹配以竞争资源。对业力机制的直观解释是“如果我现在屈服,将来我将得到回报。”代理商在类似拍卖的环境中竞争,他们竞标了业力单位,后者直接在其中循环并在系统中独立。我们证明,这使一个自私的代理社会能够实现高水平的效率,而无需诉诸资源的(可能有问题的)货币定价。我们将业障机制建模为动态人口游戏,并保证存在固定的NASH平衡。然后,我们通过数值分析固定的NASH平衡的性能。对于同质代理的情况,我们比较了不同的机制设计选择,表明当代理人未来意识到时,有可能实现有效且事后的公平分配。最后,我们测试针对剂异质性的鲁棒性,并通过业力重新分布向某些观察到的现象提出补救措施。

This paper presents karma mechanisms, a novel approach to the repeated allocation of a scarce resource among competing agents over an infinite time. Examples include deciding which ride hailing trip requests to serve during peak demand, granting the right of way in intersections or lane mergers, or admitting internet content to a regulated fast channel. We study a simplified yet insightful formulation of these problems where at every instant two agents from a large population get randomly matched to compete over the resource. The intuitive interpretation of a karma mechanism is "If I give in now, I will be rewarded in the future." Agents compete in an auction-like setting where they bid units of karma, which circulates directly among them and is self-contained in the system. We demonstrate that this allows a society of self-interested agents to achieve high levels of efficiency without resorting to a (possibly problematic) monetary pricing of the resource. We model karma mechanisms as dynamic population games and guarantee the existence of a stationary Nash equilibrium. We then analyze the performance at the stationary Nash equilibrium numerically. For the case of homogeneous agents, we compare different mechanism design choices, showing that it is possible to achieve an efficient and ex-post fair allocation when the agents are future aware. Finally, we test the robustness against agent heterogeneity and propose remedies to some of the observed phenomena via karma redistribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源