论文标题
仙人掌机制:大型组成制度中的最佳差分隐私机制
Cactus Mechanisms: Optimal Differential Privacy Mechanisms in the Large-Composition Regime
论文作者
论文摘要
在敏感数据上多次应用(即组成)大多数差异隐私机制。我们研究了大量组合物的最佳差异隐私机制的设计。由于大量定律,在这种制度中,最佳隐私机制是将库尔贝克·莱布勒(Kullback-Leibler)差异最小化的机制,给定两个不同输入的机制的条件输出分布之间的差异。我们制定了一个优化问题,以最大程度地减少这种差异,但要受到噪声的成本限制。我们首先证明加性机制是最佳的。由于优化问题是无限的维度,因此无法直接解决。然而,我们量化了问题,以得出由于其形状而称为“仙人掌机制”的近乎最佳的加性机制。我们表明,我们的量化方法可以任意接近最佳机制。令人惊讶的是,与这种仙人掌机制相比,高斯机制严格是最佳的,高斯机制是最佳的。最后,我们提供的数值结果表明,仙人掌机制优于有限数量组成的高斯机制。
Most differential privacy mechanisms are applied (i.e., composed) numerous times on sensitive data. We study the design of optimal differential privacy mechanisms in the limit of a large number of compositions. As a consequence of the law of large numbers, in this regime the best privacy mechanism is the one that minimizes the Kullback-Leibler divergence between the conditional output distributions of the mechanism given two different inputs. We formulate an optimization problem to minimize this divergence subject to a cost constraint on the noise. We first prove that additive mechanisms are optimal. Since the optimization problem is infinite dimensional, it cannot be solved directly; nevertheless, we quantize the problem to derive near-optimal additive mechanisms that we call "cactus mechanisms" due to their shape. We show that our quantization approach can be arbitrarily close to an optimal mechanism. Surprisingly, for quadratic cost, the Gaussian mechanism is strictly sub-optimal compared to this cactus mechanism. Finally, we provide numerical results which indicate that cactus mechanism outperforms the Gaussian mechanism for a finite number of compositions.