论文标题
巡回磁铁中的自旋刺猬衍生的电磁效应
Spin-hedgehog-derived electromagnetic effects in itinerant magnets
论文作者
论文摘要
在巡回磁铁中,已知Ruderman-Kitel-Kasuya-Yosida类型的间接交换耦合可以稳定不稳定的自旋螺旋。而高阶旋转相互作用的描述则有利于形成非稳态磁纹理。这是由有限的浆果阶段表现出来的,当它们的旋转遵循这种质地时,传导电子会积聚,从而导致拓扑厅效应。我们在这里利用具有双线性 - 生物交换相互作用的有效自旋模型来研究磁性刺猬晶格的形成,该模型代表了磁性抗和单极的定期阵列,并且最近在B20型化合物中观察到了三维迭代磁铁。与广泛使用的蒙特卡洛模拟相反,我们采用一种基于神经网络的方法来探索非中心对称晶体结构中的基态自旋构型。此外,由于与自旋刺猬晶格的耦合,我们在巡回磁铁中与非零标量自旋手性相关的拓扑厅电导率,并提供了磁磁kerr效应的证据。
In itinerant magnets, the indirect exchange coupling of Ruderman-Kittel-Kasuya-Yosida type is known to stabilize incommensurate spin spiral. Whereas an account of higher order spin interactions favors the formation of a noncoplanar magnetic texture. This is manifested by the finite Berry phase the conduction electrons accumulate when their spins follow this texture, leading thus to the topological Hall effect. We herein utilize the effective spin model with bilinear-biquadratic exchange interactions for studying the formation of the magnetic hedgehog lattice, that represents a periodic array of magnetic anti- and monopoles and has been recently observed in the B20-type compounds, in a three-dimensional itinerant magnet. As opposed to widely used Monte Carlo simulations, we employ a neural-network-based approach for exploring the ground state spin configuration in a noncentrosymmetric crystal structure. Further, we address the topological Hall conductivity, associated with nonzero scalar spin chirality, in the itinerant magnet due to the coupling to the spin hedgehog lattice, and provide the evidence of magneto-optic Kerr effect.