论文标题
伯格曼(Bergman)和与一类广义分析功能相关的伯格曼(Bergman)和强壮空间的某些方面
Some aspects of the Bergman and Hardy spaces associated with a class of generalized analytic functions
论文作者
论文摘要
对于$λ\ ge0 $,a $ c^2 $函数$ f $在单位磁盘$ {\ mathbb d} $上定义为$λ$ - 分析如果$ d _ {\ bar {z}} f = 0 $美元本文的目的是在相关的伯格曼空间上研究几个问题$ a^{p}_λ({\ m缩bb d})$和hardy spaces $h_λ^p({\ mathbb d} p({\ mathbb d})$ for $ p \ge2λ/(2λ+1)$,例如bergman the bergman the Bergman Profactions,and functions and Bergection,donfloctions in $ a^{p}_λ({\ mathbb d})$和$h_λ^p({\ mathbb d})$,以及$ a^{p}_λ({\ mathbb d}的表征和插值)$。
For $λ\ge0$, a $C^2$ function $f$ defined on the unit disk ${\mathbb D}$ is said to be $λ$-analytic if $D_{\bar{z}}f=0$, where $D_{\bar{z}}$ is the (complex) Dunkl operator given by $D_{\bar{z}}f=\partial_{\bar{z}}f-λ(f(z)-f(\bar{z}))/(z-\bar{z})$. The aim of the paper is to study several problems on the associated Bergman spaces $A^{p}_λ({\mathbb D})$ and Hardy spaces $H_λ^p({\mathbb D})$ for $p\ge2λ/(2λ+1)$, such as boundedness of the Bergman projection, growth of functions, density, completeness, and the dual spaces of $A^{p}_λ({\mathbb D})$ and $H_λ^p({\mathbb D})$, and characterization and interpolation of $A^{p}_λ({\mathbb D})$.