论文标题

Turbo:边缘视频分析的机会性增强

Turbo: Opportunistic Enhancement for Edge Video Analytics

论文作者

Lu, Yan, Jiang, Shiqi, Cao, Ting, Shu, Yuanchao

论文摘要

边缘计算广泛用于视频分析。为了减轻准确性和成本之间的固有张力,已经提出了各种视频分析管道,以优化GPU在边缘节点上的使用。但是,我们发现,由于视频内容的变化,在管道的不同位置进行了次采样和过滤,GPU计算为边缘节点提供的资源通常被不足。与模型和管道优化相反,在这项工作中,我们使用非确定性和零散的闲置GPU资源研究了机会数据增强的问题。具体而言,我们提出了一个特定于任务的歧视和增强模块以及一种模型感知的对抗训练机制,提供了一种以准确有效的方式识别和转换特定于视频管道的低质量图像的方法。在潜伏期和GPU资源约束下,进一步开发了多个EXIT模型结构和资源感知的调度程序。跨多个视频分析管道和数据集进行的实验表明,通过明智地分配少量的空闲资源,这些资源往往会从增强中带来更大的边际收益,我们的系统将DNN对象检测准确性提高了7.3-11.3 \%$ $,而不会产生任何延迟成本。

Edge computing is being widely used for video analytics. To alleviate the inherent tension between accuracy and cost, various video analytics pipelines have been proposed to optimize the usage of GPU on edge nodes. Nonetheless, we find that GPU compute resources provisioned for edge nodes are commonly under-utilized due to video content variations, subsampling and filtering at different places of a pipeline. As opposed to model and pipeline optimization, in this work, we study the problem of opportunistic data enhancement using the non-deterministic and fragmented idle GPU resources. In specific, we propose a task-specific discrimination and enhancement module and a model-aware adversarial training mechanism, providing a way to identify and transform low-quality images that are specific to a video pipeline in an accurate and efficient manner. A multi-exit model structure and a resource-aware scheduler is further developed to make online enhancement decisions and fine-grained inference execution under latency and GPU resource constraints. Experiments across multiple video analytics pipelines and datasets reveal that by judiciously allocating a small amount of idle resources on frames that tend to yield greater marginal benefits from enhancement, our system boosts DNN object detection accuracy by $7.3-11.3\%$ without incurring any latency costs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源