论文标题
用于基于图像的数字病理分子改变的检测的端到端学习
End-to-end Learning for Image-based Detection of Molecular Alterations in Digital Pathology
论文作者
论文摘要
当前在数字病理学中进行整个幻灯片图像(WSI)分类的方法主要利用了两阶段的学习管道。第一阶段确定了感兴趣的区域(例如肿瘤组织),而第二阶段的过程以监督的方式从这些区域裁剪了瓷砖。在推断过程中,将大量瓷砖合并为整个幻灯片的统一预测。这种方法的主要缺点是对特定于任务的辅助标签的要求,这些标签未在临床常规中获得。我们提出了一条新型的WSI分类学习管道,该管道是可训练的端到端,不需要任何辅助注释。我们采用我们的方法来预测许多不同用例的分子改变,包括检测结直肠肿瘤中的微卫星不稳定性以及对癌症基因组地图组的结肠,肺和乳腺癌病例的特异性突变的预测。结果的AUC得分高达94%,并且被证明与最先进的两阶段管道具有竞争力。我们认为,我们的方法可以促进未来的数字病理研究研究,并有助于解决癌症表型预测的大量问题,希望将来为更多患者提供个性化疗法。
Current approaches for classification of whole slide images (WSI) in digital pathology predominantly utilize a two-stage learning pipeline. The first stage identifies areas of interest (e.g. tumor tissue), while the second stage processes cropped tiles from these areas in a supervised fashion. During inference, a large number of tiles are combined into a unified prediction for the entire slide. A major drawback of such approaches is the requirement for task-specific auxiliary labels which are not acquired in clinical routine. We propose a novel learning pipeline for WSI classification that is trainable end-to-end and does not require any auxiliary annotations. We apply our approach to predict molecular alterations for a number of different use-cases, including detection of microsatellite instability in colorectal tumors and prediction of specific mutations for colon, lung, and breast cancer cases from The Cancer Genome Atlas. Results reach AUC scores of up to 94% and are shown to be competitive with state of the art two-stage pipelines. We believe our approach can facilitate future research in digital pathology and contribute to solve a large range of problems around the prediction of cancer phenotypes, hopefully enabling personalized therapies for more patients in future.