论文标题

同源等级与双曲线量的比率,ii

The ratio of homology rank to hyperbolic volume, II

论文作者

Guzman, Rosemary K., Shalen, Peter B.

论文摘要

在温和的拓扑限制下,我们获得了有限量的可定位的双曲线$ 3 $歧管$ m $在其数量方面的mod $ p $同源性(对于任何prime $ p $)的尺寸的新线性上限。本文中该论点的一个令人惊讶的特征是它们需要应用四种颜色定理。 如果$ m $关闭,并且(a)$π_1(m)$没有亚组同构对基本组的基本组,则可以封闭的,可定向的$ 2、3 $或$ 4 $,或(b)$ p = 2 $和$ m $包含no(嵌入式)$ 2 $ $ 4 $ 2,3 $ 2,3 $ 2,3 $ 4 H_1(M; F_P)<157.763 \ CDOT \ text {vol}(m)$。如果$ m $具有一个或多个尖端,那么我们将获得非常相似的界限,假设$π_1(m)$对$ g = 2,\ dots $ g $ g $ g $ g $ g $ g $ g $ g $ g = 2,\ dots,8 $的基本群的基本组没有亚组同构。这些结果应与我们以前的论文$ \ yalogy \ rank \ rank \ to \双曲\卷,\ i $的结果进行比较,其中我们获得了一个系数的范围为$ 168 $而不是$ 158 $,而不是158美元,而无需限制表面亚组或不可压缩的表面。在以后的论文中,使用更多参与的论点,我们希望获得与本文有关的界限,而无需限制。 这些论点还为$ \ \ text {vol} \,m $等级提供了新的线性上限(具有恒定条款),假设$π_1(m)$是$ 9 $ - free,或$ m $是关闭的,而$π_1(m)$ 5 $ $ $ $ $ $ $ $ $。

Under mild topological restrictions, we obtain new linear upper bounds for the dimension of the mod $p$ homology (for any prime $p$) of a finite-volume orientable hyperbolic $3$ manifold $M$ in terms of its volume. A surprising feature of the arguments in the paper is that they require an application of the Four Color Theorem. If $M$ is closed, and either (a) $π_1(M)$ has no subgroup isomorphic to the fundamental group of a closed, orientable surface of genus $2, 3$ or $4$, or (b) $p = 2$, and $M$ contains no (embedded, two-sided) incompressible surface of genus $2, 3$ or $4$, then $\text{dim}\, H_1(M;F_p) < 157.763 \cdot \text{vol}(M)$. If $M$ has one or more cusps, we get a very similar bound assuming that $π_1(M)$ has no subgroup isomorphic to the fundamental group of a closed, orientable surface of genus $g$ for $g = 2, \dots,8$. These results should be compared with those of our previous paper $The\ ratio\ of\ homology\ rank\ to\ hyperbolic\ volume,\ I$, in which we obtained a bound with a coefficient in the range of $168$ instead of $158$, without a restriction on surface subgroups or incompressible surfaces. In a future paper, using a much more involved argument, we expect to obtain bounds close to those given by the present paper without such a restriction. The arguments also give new linear upper bounds (with constant terms) for the rank of $π_1(M)$ in terms of $\text{vol}\,M$, assuming that either $π_1(M)$ is $9$-free, or $M$ is closed and $π_1(M)$ is $5$-free.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源