论文标题
像没有明天一样的增强:始终执行神经网络进行医学成像
Augment like there's no tomorrow: Consistently performing neural networks for medical imaging
论文作者
论文摘要
深层神经网络在各种医学成像任务中取得了令人印象深刻的表现。但是,这些模型通常会失败培训期间未使用的数据,例如来自其他医疗中心的数据。如何识别患有这种脆弱性的模型以及如何设计强大的模型是临床采用的主要障碍。在这里,我们提出了确定模型泛化失败的原因以及如何规避它们的一般方法。首先,我们使用$ \ textIt {分发偏移的数据集} $来表明使用当前最新方法训练的模型对临床实践中遇到的可变性高度脆弱,然后开发出$ \ textit {strong augmentation} $策略来解决这种脆弱性。分发偏移的数据集使我们能够发现这种脆弱性,否则在针对多个外部数据集验证后可能仍未被发现。强大的增强使我们能够训练强大的模型,从而在训练数据分布的变化下达到一致的性能。重要的是,我们证明,强大的增强产生生物医学成像模型,这些模型在应用于现实世界临床数据时会保留高性能。我们的结果为临床实践中可靠和强大的神经网络的开发和评估铺平了道路。
Deep neural networks have achieved impressive performance in a wide variety of medical imaging tasks. However, these models often fail on data not used during training, such as data originating from a different medical centre. How to recognize models suffering from this fragility, and how to design robust models are the main obstacles to clinical adoption. Here, we present general methods to identify causes for model generalisation failures and how to circumvent them. First, we use $\textit{distribution-shifted datasets}$ to show that models trained with current state-of-the-art methods are highly fragile to variability encountered in clinical practice, and then develop a $\textit{strong augmentation}$ strategy to address this fragility. Distribution-shifted datasets allow us to discover this fragility, which can otherwise remain undetected after validation against multiple external datasets. Strong augmentation allows us to train robust models achieving consistent performance under shifts from the training data distribution. Importantly, we demonstrate that strong augmentation yields biomedical imaging models which retain high performance when applied to real-world clinical data. Our results pave the way for the development and evaluation of reliable and robust neural networks in clinical practice.