论文标题

INSMIX:迈向核实例分割的现实生成数据增强

InsMix: Towards Realistic Generative Data Augmentation for Nuclei Instance Segmentation

论文作者

Lin, Yi, Wang, Zeyu, Cheng, Kwang-Ting, Chen, Hao

论文摘要

从组织学图像中分割的核分割是数字病理分析中的基本任务。但是,基于深度学习的核分割方法通常会受到注释有限。本文提出了一种现实的数据扩展方法,用于核分割,名为Insmix,遵循拷贝性平滑原理,并执行形态受限的生成实例增强。具体而言,我们提出了形态约束,使增强图像能够在保持其形态特征(例如几何和位置)的同时获取有关核的大量信息。为了充分利用背景的像素冗余并改善模型的鲁棒性,我们进一步提出了一种背景扰动方法,该方法随机地随机洗牌,而不会使原始核分布失调。为了实现原始和模板实例之间的上下文一致性,使用前景相似性编码器(FSE)和三重态损失设计了平滑器。我们在两个数据集(即Kumar和CPS数据集)上验证了所提出的方法。实验结果证明了每个组件的有效性以及我们方法与最新方法相比的出色性能。

Nuclei Segmentation from histology images is a fundamental task in digital pathology analysis. However, deep-learning-based nuclei segmentation methods often suffer from limited annotations. This paper proposes a realistic data augmentation method for nuclei segmentation, named InsMix, that follows a Copy-Paste-Smooth principle and performs morphology-constrained generative instance augmentation. Specifically, we propose morphology constraints that enable the augmented images to acquire luxuriant information about nuclei while maintaining their morphology characteristics (e.g., geometry and location). To fully exploit the pixel redundancy of the background and improve the model's robustness, we further propose a background perturbation method, which randomly shuffles the background patches without disordering the original nuclei distribution. To achieve contextual consistency between original and template instances, a smooth-GAN is designed with a foreground similarity encoder (FSE) and a triplet loss. We validated the proposed method on two datasets, i.e., Kumar and CPS datasets. Experimental results demonstrate the effectiveness of each component and the superior performance achieved by our method to the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源